Simple disease incidence Buck CE, Cavanagh WG, & Litton CD (1996) Bayesian approach to interpreting archaeological data. Wiley: Chichester p146-159 and 169 © Andrew Millard 2001 model{ p ~ dbeta(alpha,beta) # prior on underlying prevelance d ~ dbin(p, n) # likelihood of d observed cases in n excavated skeletons } Data Case I limited excavation (p146-148) list(alpha=1, beta=1,d=3, n=5) alpha=1, beta=1 gives a uniform (0,1) prior on p Case II larger excavation (p149) list(alpha=1, beta=1,d=15, n=25) Case III limited excavation with informative prior (p 149-152) list(alpha=3, beta=3,d=3, n=5) Case IV revision of belief after second excavation (p169) list(alpha=4, beta=3, d=12, n=20) alpha=4, beta=3 represents the posterior from Case I alternatively we can code both data sets into one model, with exactly the same result: model{ p ~ dbeta(alpha,beta) # prior on underlying prevelance d[1] ~ dbin(p, n[1]) # likelihood of d observed cases in n excavated skeletons d[2] ~ dbin(p, n[2]) } list(alpha=1, beta=1, d=c(3,12), n=c(5,20))